我组参加泰国PYROASIA 2025会议 Participation in the PYROASIA 2025 conference, Thailand

Prof. Songbo He was invited as a speaker

何松波研究员应邀担任演讲嘉宾


Title: Ex-situ catalytic pyrolysis of glycerol to bio-based benzene, toluene, and xylenes

口头报告题目:甘油非原位催化热解制生物基苯、甲苯、二甲苯


ABSTRACT: 

        Aromatics industry produces approximately 110 million tons of benzene, toluene, and xylenes (BTX) annually. As a result of the strong drive towards a circular (bio-)economy, the demand for circular and biobased BTX has increased remarkably in recent years. Circular carbon sources such as end-of-life plastics and biomass are of interest to partly replace fossil resources to produce BTX. Catalytic pyrolysis is an attractive approach, though techno-economic viability needs to be improved, e.g. by improving BTX yields and lowering the catalyst consumption.

       Crude glycerol is a major by-product (ca. 10 wt.%) of bio-diesel production and has been considered a very attractive green building block to produce various bio-based chemicals. Among others, glycerol to bio-based aromatics (benzene, toluene, and xylenes, bio-BTX) has emerged since 2010, boosted by the high demand in both bio-refinery (profitability of bio-diesel industry) and refinery (greening up the aromatics industry). We have demonstrated the continuous catalytic conversion of crude glycerol (200 g h-1) towards BTX using a shaped H-ZSM-5/bentonite catalyst. Irreversible catalyst deactivation after a few reaction-regeneration cycles was observed besides coke formation. Further benchmark study using pure glycerol and an unmodified H-ZSM-5 zeolite indicated that irreversible catalyst deactivation is related to dealumination of the H-ZSM-5 framework, which could be moderated by using a proper binder. Nevertheless, there is an incentive to increase the state-of-the-art catalyst performance to enhance the chance of success for industrial implementation. Our latest research focuses on the catalytic co-conversion of glycerol with various co-feeds and the recycled products. Remarkable synergistic effects of co-feeding on peak BTX carbon yield, product selectivity, total BTX productivity, catalyst lifetime, and catalyst regenerability will be presented.

       With these developments, I will address the following technical challenges of bio-BTX production in the biorefinery:

       1. Which one is preferable, in-situ or ex-situ catalytic pyrolysis approach?

       2. How to enhance the BTX productivity over the zeolite catalysts?

       3. How to prolong the catalyst lifetime and inhibit irreversible catalyst deactivation?

       4. How to recycle catalysts for frequent catalytic reaction-regeneration cycles?

       5. How to co-produce bio-BTX in an FCC reactor by leveraging the existing refinery infrastructure?


摘要:

       芳烃工业每年生产约1.1亿吨苯、甲苯和二甲苯(BTX)。在向循环(生物)经济强劲驱动的背景下,近年来对循环型和生物基BTX的需求显著增长。利用废弃塑料和生物质等循环碳源部分替代化石资源生产BTX受到关注。催化热解法是一种具有吸引力的方法,但其技术经济可行性有待提高,例如需提升BTX收率并降低催化剂消耗。

       粗甘油是生物柴油生产的主要副产物(约10 wt.%),被视为生产多种生物基化学品的理想绿色原料。其中,自2010年以来,以甘油为原料生产生物基芳烃(苯、甲苯和二甲苯,生物基BTX)的技术快速发展,这既得益于生物炼制领域(提升生物柴油行业盈利能力)的需求,也受益于传统炼化行业(推动芳香族产业绿色转型)的需求。我们采用成型的H-ZSM-5/膨润土催化剂,实现了粗甘油(200 g·h⁻¹)连续催化转化制备BTX。除了积炭问题外,还观察到催化剂在经历几次反应-再生循环后出现不可逆失活。后续使用纯甘油和未改性H-ZSM-5沸石的基准研究表明,不可逆失活与H-ZSM-5骨架脱铝有关,而通过使用合适的粘结剂可缓解此问题。然而,为提高工业化应用的成功率,仍需提升现有催化剂的性能。我们最新的研究聚焦于甘油与多种共进料及循环产物的催化共转化。共进料在BTX碳收率峰值、产物选择性、总BTX产率、催化剂寿命及催化剂再生性方面展现出显著的协同效应,相关结果将予以展示。

       基于这些进展,我将针对生物炼制中生物基BTX生产面临的以下技术挑战展开论述:

       1. 原位催化热解与非原位催化热解,哪种方法更优?

       2. 如何提高沸石催化剂上的BTX产率?

       3. 如何延长催化剂寿命并抑制不可逆失活?

       4. 如何实现催化剂在频繁反应-再生循环中的回收利用?

       5. 如何利用现有炼厂基础设施,在流化催化裂化装置中联产生物基BTX?